Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Transl Med ; 22(1): 132, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310289

RESUMO

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Avaliação Pré-Clínica de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Biópsia Líquida , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genética
2.
Mol Biol Rep ; 51(1): 94, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194206

RESUMO

Gene therapy has become a major focus of current biomedical research. CRISPR (Clustered Regularly Inter spaced Short Palindromic Repeats) systems have been extensively researched for disease treatment applications through genome editing specificity. Compared with Cas9 (CRISPR-associated proteins, Cas), a commonly used tool enzyme for genome editing, Cas13a exhibits RNA-dependent endonuclease activity, including collateral cleavage without obvious potential genetic risks. With its high specificity, Cas13a has significantly improved the sensitivity of viral diagnosis and shown potential to eliminate viruses. However, its efficacy in tumor therapy has not been determined. This review introduces the mechanism and research developments associated with the CRISPR-Cas13a system in tumor treatments and its potential to be used as a new tool for gene therapy. We hope more research would apply Cas13a-based therapy in cancer treatment in the future.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Edição de Genes , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
3.
PLoS One ; 19(1): e0290986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252669

RESUMO

Melanoma is a highly malignant skin cancer. This study aimed to investigate the role of long non-coding RNA MIR205 host gene (lncRNA MIR205HG) in proliferation, invasion, and migration of melanoma cells via jumonji domain containing 2C (JMJD2C) and ALKB homolog 5 (ALKBH5). Real-time quantitative polymerase chain reaction or Western blot assay showed that MIR205HG, JMJD2C, and ALKBH5 were increased in melanoma cell lines. Cell counting kit-8, colony formation, and Transwell assays showed that silencing MIR205HG inhibited proliferation, invasion, and migration of melanoma cells. RNA immunoprecipitation, actinomycin D treatment, and chromatin immunoprecipitation showed that MIR205HG may bind to human antigen R (HuR, ELAVL1) and stabilized JMJD2C expression, and JMJD2C may increase the enrichment of H3K9me3 in the ALKBH5 promotor region to promote ALKBH5 transcription. The tumor xenograft assay based on subcutaneous injection of sh-MIR205HG-treated melanoma cells showed that silencing MIR205HG suppressed tumor growth and reduced Ki67 positive rate by inactivating the JMJD2C/ALKBH5 axis. Generally, MIR205HG facilitated proliferation, invasion, and migration of melanoma cells through HuR-mediated stabilization of JMJD2C and increasing ALKBH5 transcription by erasing H3K9me3.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Histona Desmetilases com o Domínio Jumonji , Melanoma , RNA Longo não Codificante , Humanos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , Melanoma/metabolismo , Melanoma/patologia , Processos Neoplásicos , RNA Longo não Codificante/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
4.
RSC Adv ; 12(39): 25279, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199334

RESUMO

[This retracts the article DOI: 10.1039/C7RA12520H.].

5.
Mol Oncol ; 15(11): 3184-3202, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955149

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide due to a high rate of tumour metastasis and disease recurrence. In physiological conditions, tetraspanins interact with specific partner proteins in tetraspanin-enriched microdomains and regulate their subcellular localization and function. However, the function of Tspan5 in pathological processes, particularly in cancer biology and its clinical significance, are still unclear. Here, we describe that a high expression of Tspan5 is significantly associated with some clinicopathological features including invasive length, vascular invasion, clinical stage and poor overall survival of HCC patients. Alterations of Tspan5 expression by lentivirus transductions in HCC cells demonstrated that Tspan5 promotes wound healing and cell migration in vitro and tumour metastasis of HCC cells in vivo. Mechanistic studies revealed that Tspan5 promoted cell migration and tumour metastasis by increasing the enzymatic maturation of ADAM10 and activating Notch signalling via the increase of the cleavage of the Notch1 receptor catalysed by the γ-secretase complex. Activation of Notch signalling by Tspan5 was shown further to enhance the epithelial-mesenchymal transition (EMT) and actin skeleton rearrangement of tumour cells. In clinical HCC samples, Tspan5 expression is strongly correlated with many key molecules acting in Notch signalling and EMT, highlighting the role of Tspan5 in the regulation of Notch signalling, EMT and tumour metastasis of HCC. Our findings provide new insights into the mechanism of tumour metastasis and disease progression of HCC and may facilitate the development of novel clinical intervention strategies against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais , Tetraspaninas/genética , Tetraspaninas/metabolismo
6.
Front Immunol ; 12: 798451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095878

RESUMO

Background: Anal canal squamous cell carcinoma (ACSCC) is an exceedingly rare malignant neoplasm with challenges in sphincter preservation, treatment toxicities and long-term survival. Little is known concerning the activity of PD-1 antibodies in locally advanced ACSCC. This study reports on the efficacy and toxicities of a neoadjuvant PD-1 blockade combined with chemotherapy followed by concurrent immunoradiotherapy in ACSCC patients, and describes biomarkers expression and mutation signatures. Methods: In this cohort study, patients were treated as planned, including four cycles of neoadjuvant PD-1 antibody toripalimab combined with docetaxol and cisplatin, followed by radiotherapy and two cycles of concurrent toripalimab. Multiplex immunofluorescence staining (mIHC) with PD-L1, CD8, CD163, Pan-Keratin and DAPI was performed with the pretreatment tumor tissue. Whole exome sequencing was performed for the primary tumor and peripheral blood mononuclear cells. The primary endpoint was the complete clinical response (cCR) rate at 3 months after overall treatment. Acute and late toxicities graded were assessed prospectively. Results: Five female patients with a median age of 50 years old (range, 43-65 years old), finished treatment as planned. One patient had grade 3 immune related dermatitis. Two patients had grade 3 myelosuppression during neoadjuvant treatment. No severe radiation-related toxicities were noted. Four patients with PD-L1 expression >1% achieved a cCR after neoadjuvant treatment. and the other patient with negative PD-L1 expression also achieved a cCR at 3 months after radiotherapy. All the patients were alive and free from disease and had a normal quality of life, with 19.6-24 months follow up. Inconsistent expression of PD-L1 and CD163 was detected in 3 and 5 patients, respectively. TTN, POLE, MGAM2 were the top mutation frequencies, and 80 significant driver genes were identified. Pathway analysis showed enrichment of apoptosis, Rap1, Ras, and pathways in cancer signaling pathways. Eight significantly deleted regions were identified. Conclusions: This small cohort of locally advanced ACSCC patients had quite satisfactory cCR and sphincter preservation rate, after neoadjuvant PD-1 antibody toripalimab combined with chemotherapy followed by concurrent immunoradiotherapy, with mild acute and long-term toxicities.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Ânus/terapia , Carcinoma de Células Escamosas/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Radioimunoterapia/métodos , Adulto , Idoso , Canal Anal/metabolismo , Canal Anal/patologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Ânus/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Estudos de Coortes , Terapia Combinada , Dermatite/etiologia , Docetaxel/administração & dosagem , Docetaxel/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Projetos Piloto , Receptor de Morte Celular Programada 1/metabolismo , Radioimunoterapia/efeitos adversos , Resultado do Tratamento
7.
Front Immunol ; 10: 1620, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396207

RESUMO

In rheumatoid arthritis(RA) pathogenesis, activated RA fibroblast-like synoviocytes (RA-FLSs) exhibit similar proliferative features as tumor cells and subsequent erosion to cartilage will eventually lead to joint destruction. Therefore, it is imperative to search for compounds, which can effectively inhibit the abnormal activation of RA-FLSs, and retard RA progression.3'3-Diindolylmethane (DIM), the major product of the acid-catalyzed oligomerization of indole-3-carbinol from cruciferous vegetables, has been reported to be functionally relevant to inhibition of migration, invasion and carcinogenesis in some solid tumors. In this study, we explored the anti-proliferation, anti-metastasis and anti-inflammation effects of DIM on RA-FLSs as well as the underlying molecular mechanisms. To do this, primary RA-FLSs were isolated from RA patients and an animal model. Cell proliferation, migration and invasion were measured using CCK-8, scratch, and Transwell assays, respectively. The effects of DIM on Matrix metalloproteinases (MMPs) and some inflammatory factors mRNA and key molecules such as some inflammatory factors and those involved in aberrantly-activated signaling pathway in response to tumor necrosis factor α(TNF-α), a typical characteristic mediator in RA-FLS, were quantitatively measured by real-time PCR and western blotting. Moreover, the effect of DIM on adjuvant induced arthritis(AIA) models was evaluated with C57BL/6 mice in vivo. The results showed that DIM inhibited proliferation, migration and invasion of RA-FLS in vitro. Meanwhile, DIM dramatically suppressed TNF-α-induced increases in the mRNA levels of MMP-2, MMP-3, MMP-8, and MMP-9; as well as the proinflammatory factors IL-6, IL-8, and IL-1ß. Mechanistic studies revealed that DIM is able to suppress phosphorylated activation not only of p38, JNK in MAPK pathway but of AKT, mTOR and downstream molecules in the AKT/mTOR pathway. Moreover, DIM treatment decreased expression levels of proinflammatory cytokines in the serum and alleviated arthritis severity in the knee joints of AIA mice. Taken together, our findings demonstrate that DIM could inhibit proliferation, migration and invasion of RA-FLSs and reduce proinflammatory factors induced by TNF-α in vitro by blocking MAPK and AKT/mTOR pathway and prevent inflammation and knee joint destruction in vivo, which suggests that DIM might have therapeutic potential for RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/imunologia , Fibroblastos/efeitos dos fármacos , Indóis/farmacologia , Compostos Fitoquímicos/farmacologia , Animais , Artrite Reumatoide/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
8.
Br J Cancer ; 121(1): 22-33, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31130723

RESUMO

BACKGROUND: Sorafenib is the only approved first line systemic therapy for advanced hepatocellular carcinoma (HCC) in the last decade. Tumour resistance to sorafenib has been of major obstacles to improve HCC patient survival. METHODS: We polarised THP-1 cells to M1 and M2 macrophages, performed various in vitro assays and developed sorafenib-resistant xenograft models to investigate the role of tumour-associated macrophages (TAM)-secreted molecules in HCC resistance to the targeted therapy. RESULTS: We demonstrated M2, but not M1, macrophages not only promote proliferation, colony formation and migration of hepatoma cells but also significantly confer tumour resistance to sorafenib via sustaining tumour growth and metastasis by secreting hepatocyte growth factor (HGF). HGF activates HGF/c-Met, ERK1/2/MAPK and PI3K/AKT pathways in tumour cells. Tumour-associated M2 macrophages were accumulated in sorafenib-resistance tumours more than in sorafenib-sensitive tumours in vivo and produced abundant HGF. HGF chemoattracts more macrophages migrated from surrounding area, regulates the distribution of M2 macrophages and increases hepatoma resistance to sorafenib in a feed-forward manner. CONCLUSIONS: Our results provide new insights into the mechanisms of sorafenib resistance in HCC and rationale for developing new trials by combining sorafenib with a potent HGF inhibitor such as cabozantinib to improve the first line systemic therapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fator de Crescimento de Hepatócito/fisiologia , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos/fisiologia , Sorafenibe/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Humanos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
9.
Cancer Manag Res ; 11: 2415-2424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118763

RESUMO

Objective: To understand the role of WFDC2 in metastasis of ovarian cancer. Methods: By knockdown or overexpression of WFDC2, we demonstrated the role of WFDC2 in epithelial-mesenchymal transition (EMT). Results: We demonstrated that stable knockdown of WFDC2 suppressed EMT along with the upregulation of E-cadherin and the downregulation of Vimentin. In addition, WFDC2 knockdown decreases matrix metalloproteinase-2 (MMP-2) expression in in vitro cell model and in in vivo nude mice xenografts. The correlation of WFDC2 and MMP-2 expression in the clinical sample confirmed that WFDC2 was tightly correlated with the development of tumor. More importantly, the EMT phenotype and cell invasion induced by WFDC2 overexpressing can be reversed by the siMMP-2 and P13K/AKT signaling inhibitor. Conclusion: WFDC2 contributed to ovarian cancer metastasis and EMT as a positive regulator by activating AKT signaling pathway and inducing MMP-2 expression.

10.
J Pathol ; 248(2): 204-216, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30714150

RESUMO

RN181, a RING finger domain-containing protein, is an E3 ubiquitin ligase. However, its biological function and clinical significance in cancer biology are obscure. Here, we report that RN181 expression is significantly down-regulated in 165 tumour tissues of gastric carcinoma (GC) versus adjacent non-tumour tissues, and inversely associated with tumour differentiation, tumour size, clinical stage, and patient's overall survival. Alterations of RN181 expression in GC cells by retrovirus-transduced up-regulation and down-regulation demonstrated that RN181 functions as a tumour suppressor to inhibit growth of GC in both in vitro culture and in vivo animal models by decreasing tumour cell proliferation and increasing tumour cell apoptosis. Cell cycle analysis revealed that RN181 controls the cell cycle transition from G1 to S phase. Mechanistic studies demonstrated that RN181 inhibits ERK/MAPK signalling, thereby regulating the activity of cyclin D1-CDK4, and consequently controlling progression in the cell cycle from G1 to S phase. Restoring CDK4 in GC cells rescued the inhibitory phenotype produced by RN181 in vitro and in vivo, suggesting a dominant role of CDK4 in control of the tumour growth by RN181. Importantly, RN181 expression is inversely correlated with the expression of cyclin D1 and CDK4 in GC clinical samples, substantiating the role of the RN181-cyclin D1/CDK4 pathway in control of the tumour growth of GC. Our results provide new insights into the pathogenesis and development of GC and rationale for developing novel intervention strategies against GC by disruption of ERK/MAPK-cyclin D1/CDK4 signalling. In addition, RN181 may serve as a novel biomarker for predicting clinical outcome of GC. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Apoptose , Proliferação de Células , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Gástricas/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Carga Tumoral , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
11.
J Cell Biochem ; 120(6): 9564-9571, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520131

RESUMO

Long noncoding RNA (lncRNA) HAND2-AS1 is a well-characterized tumor suppressor in several types of malignancies, while its role in esophagus squamous cell carcinoma (ESCC) is unknown. In this study, we found that lncRNA HAND2-AS1 was downregulated, while microRNA-21 ( miRNA-21) was upregulated in tumor tissues than in adjacent healthy tissues of ESCC patients. Expression levels of lncRNA HAND2-AS1 and miRNA-21 were significantly and inversely correlated in tumor tissues but not in healthy tissues. Plasma levels of lncRNA HAND2-AS1 were lower in ESCC patients than in healthy controls, and downregulation of plasma lncRNA HAND2-AS1 distinguished early stage ESCC patients from healthy controls. lncRNA HAND2-AS1 overexpression resulted in downregulation of miRNA-21 in cells of ESCC cell lines and inhibited cell proliferation, migration, and invasion. miRNA-21 overexpression failed to affect lncRNA HAND2-AS1 expression but significantly attenuated the inhibitory effect of lncRNA HAND2-AS1 overexpression on cancer cell proliferation, migration, and invasion. Therefore, lncRNA HAND2-AS1 may inhibit cancer cell proliferation, migration, and invasion in ESCC by regulating miRNA-21.


Assuntos
Movimento Celular/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias
13.
RSC Adv ; 8(11): 6160-6168, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539582

RESUMO

Background: Melanoma is the most common malignancy of skin cancer. Small nucleolar RNA host gene 5 (SNHG5), a long non-coding RNA (lncRNA), has been demonstrated to be abnormally expressed in multiple malignances. However, the roles and molecular mechanisms of SNHG5 in melanoma progression have not been well identified. Methods: RT-qPCR assays were used to detect the expression patterns of SNHG5 and microRNA-155 (miR-155). Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays. Cell apoptosis rate was measured by flow cytometry via double-staining of fluorescein isothiocyanate (FITC)-labeled annexin V (Annexin V-FITC) and propidium iodide (PI). The interaction between SNHG5 and miR-155 was validated using bioinformatics analysis, subcellular fraction assay, luciferase assay and RNA immunoprecipitation (RIP) assay. A mouse model of melanoma was established to further verify the effect of SNHG5 on tumor growth in vivo. Results: SNHG5 expression was upregulated in melanoma tumor tissues and cell lines. Moreover, higher SNHG5 expression was associated with advanced pathogenic status and poor prognosis. Functional analysis showed that SNHG5 knockdown suppressed proliferation and facilitated apoptosis in melanoma cells. Mechanical exploration revealed that SNHG5 acted as a molecular sponge of miR-155 in melanoma cells. Restoration experiments delineated that miR-155 down-regulation partly abrogated SNHG5-knockdown-mediated anti-proliferation and pro-apoptosis effect in melanoma cells. In vivo assays further demonstrated that SNHG5 depletion hindered tumor growth through up-regulating miR-155 expression. Conclusion: SNHG5 promoted the development of melanoma by sponging miR-155 in vitro and in vivo, implying the important implication of lncRNAs in melanoma progression and providing a potential therapeutic target for melanoma.

14.
Cancer Cell Int ; 17: 102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151817

RESUMO

BACKGROUND: MicroRNAs are considered as potential regulators in various biological pathways and contribute to the diagnosis and prognosis of cancers. MicroRNA-214-3p (miR-214-3p) was proved to be correlated with various cancers in recent studies. However, the biological functions of miR-214-3p in hepatocellular carcinoma (HCC) and its association with the prognosis of HCC after liver transplantation are still unevaluated. Here we intended to elucidate the functional implication of miR-214-3p in regulation of cell proliferation and apoptosis and its potential prediction of clinical prognosis of HCC patients. METHODS: Expressions of miR-214-3p in 98 HCC patients and three HCC cell lines were detected by quantitative reverse transcription PCR (qRT-PCR) to explore the association of miR-214-3p expression and clinicopathological characteristics. The effects of miR-214-3p on cell proliferation and apoptosis were examined by proliferation and flow cytometry assay, respectively. The direct target gene of miR-214-3p was also detected by luciferase reporter assay. RESULTS: The effects of miR-214-3p on cell proliferation and apoptosis were examined by proliferation and flow cytometry assay, respectively. The direct target gene of miR-214-3p was also detected by luciferase reporter assay. The results showed that miR-214-3p expression was downregulated in primary HCC samples compared with normal liver tissues, and was decreased in HCC recurrence species compared with non-recurrence controls (P = 0.001). Low miR-214-3p level was associated with poor overall survival (OS) (Log rank P = 0.003) and recurrence-free survival (RFS) (Log rank P = 0.007). Moreover, miR-214-3p precursor transfection resulted in decreased cell proliferation, cell cycle arrest at G1 phase, and enhanced cell apoptosis in HepG2 and HUH-7 cells. Further investigation showed that miR-214-3p could regulate its target gene maternal embryonic leucine zipper kinase (MELK) by directly binding to MELK-3'-UTR. CONCLUSIONS: miR-214-3p suppresses HCC progression by directly down-regulating MELK expression, indicating a potential therapeutic target for the treatment and prognosis of HCC patients.

15.
J Ovarian Res ; 10(1): 40, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679402

RESUMO

BACKGROUND: WAP four-disulfide core domain protein 2 (WFDC2) shows a tumor-restricted upregulated pattern of expression in ovarian cancer. METHODS: In this study, we evaluated the role of WFCD2 in tumor mobility, invasion and metastasis of ovarian cancer in clinical tissue and in ovarian cancer cells, both in vitro and in vivo. RESULTS: Our results revealed WFCD2 was overexpressed in ovarian tissues, and the expression level of WFCD2 was associated with metastasis and lymph node metastasis. Higher expression of WFCD2 was also observed in aggressive HO8910-PM cells than in HO8910 cells, and WFCD2 knockdown halted cell migration, invasion, tumorigenicity and metastasis in ovarian cancer cells, both in vitro and in vivo. Knockdown of WFDC2 induced the down-regulation of ICAM-1, CD44, and MMP2. CONCLUSION: In summary, our work demonstrates that WFCD2 promotes metastasis in ovarian cancer. These findings suggest that WFCD2 plays a critical role in promoting metastasis and may constitute a potential therapeutic target of ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Proteínas/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
16.
Oncotarget ; 7(31): 50057-50073, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27367023

RESUMO

The translationally controlled tumor protein (TCTP) can be secreted independently of the endoplasmic reticulum/Golgi pathway and has extrinsic activities when it is characterized as the histamine releasing factor (HRF). Despite its important role in allergies and inflammation, little is known about how extracellular TCTP affects cancer progression. In this study, we found that TCTP was overexpressed in the interstitial tissue of colorectal cancer (CRC) and its expression correlated with poor survival, high pathological grades and metastatic TNM stage in CRC patients. TCTP expression was greater in metastatic liver tissue than in primary tumors and was increased in highly invasive CRC cells. We demonstrated that the expression of TCTP was regulated by HIF-1α and its release was increased in response to low serum and hypoxic stress. Recombinant human TCTP (rhTCTP) promoted the migration and invasiveness of CRC cells in vitro and contributed to distant liver metastasis in vivo. Furthermore, rhTCTP activated Cdc42, phosphorylated JNK (p-JNK), increasing the translocation of p-JNK from the cytoplasm to the nucleus, as well as the secretion of MMP9. In addition, the expression of TCTP positively correlated with that of Cdc42 and p-JNK in clinical CRC samples. The silencing of Cdc42, JNK and MMP9 significantly inhibited the Matrigel invasion of rhTCTP-enhanced CRC cells. Collectively, these results identify a new role for extracellular TCTP as a promoter of CRC progression and liver metastases via Cdc42/JNK/MMP9 activation.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , MAP Quinase Quinase 4/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Hipóxia , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteína Tumoral 1 Controlada por Tradução
17.
Oncotarget ; 7(26): 40160-40173, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223087

RESUMO

Tetraspanins are believed to interact with specific partner proteins forming tetraspanin-enriched microdomains and regulate some aspects of partner protein functions. However, the role of Tspan5 during pathological processes, particularly in cancer biology, remains unknown. Here we report that Tspan5 is significantly downregulated in gastric cancer (GC) and closely associated with clinicopathological features including tumour size and TNM stage. The expression of Tspan5 is inversely correlated with patient overall survival and is an independent prognostic factor in GC. Upregulation of Tspan5 in tumour cells results in inhibition of cell proliferation and colony formation in vitro and suppression of xenograft growth of GC by reducing tumour cell proliferation in vivo. Thus, Tspan5 functions as a tumour suppressor in stomach to control the tumour growth. Mechanistically, Tspan5 inhibits the cell cycle transition from G1-S phase by increasing the expression of p27 and p15 and decreasing the expression of cyclin D1, CDK4, pRB and E2F1. The correlation of Tspan5 expression with the expression of p27, p15, cyclin D1, CDK4, pRB and E2F1 in vivo are also revealed in xenografted tumours. Reconstitution of either cyclin D1 or CDK4 in Tspan5-overexpressing GC cells rescues the inhibitory phenotype produced by Tspan5, suggesting that cyclin D1/CDK4 play a dominant role in mediating the suppression of tumour growth by Tspan5 in GC. Our results suggest that Tspan5 may serve as a prognostic biomarker for predicting outcome of GC patients and provide new insights into the pathogenesis of GC and rational for the development of clinical intervention strategies against GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/metabolismo , Tetraspaninas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Transplante de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Resultado do Tratamento
18.
J Ovarian Res ; 9: 10, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26928556

RESUMO

BACKGROUND: WAP four-disulfide core domain protein 2 (WFDC2) shows a tumor-restricted upregulated pattern of expression in ovarian cancer. METHODS: We investigated the role of estradiol (E2) on cell growth in estrogen-sensitive or estrogen-insensitive ovarian cancer cell lines. Real-time (RT)-PCR and western blotting were used to examine the expression of WFDC2 at RNA and protein levels. Growth traits of cells transfected with WFDC2-shRNA or blank control were assessed using MMT arrays. Cell apoptosis was analyzed using annexin V-FITC/PI and flow cytometry. Estrogen receptor expression was evaluated using RT-PCR and flow cytometry. Apoptosis-related proteins induced by E2 directly and indirectly were determined using an antibody array comparing cells transfected with WFDC2- shRNA or a blank control. RESULTS: High-dose (625 ng/ml) E2 increased the expression of WFDC2 in HO8910 cells at both the mRNA and protein levels. However, E2 had no effect on WFDC2 expression in estrogen-insensitive SKOV3 cells. Of interest, knockdown of WFDC2 enabled a considerable estrogen response in SKOV3 cells in terms of proliferation, similar to estrogen-responsive HO8910 cells. This transformation of SKOV3 cells into an estrogen-responsive phenotype was accompanied by upregulation of estrogen receptor beta (ERß) and an effect on cell apoptosis under E2 treatment by regulating genes related to cell proliferation and apoptosis. CONCLUSIONS: We postulate that increased WFDC2 expression plays an important role in altering the estrogen pathway in ovarian cancer, and the identification of WFDC2 as a new player in endocrine-related cancer encourages further studies on the significance of this gene in cancer development and therapy.


Assuntos
Estradiol/fisiologia , Neoplasias Ovarianas/metabolismo , Proteínas/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Estrogênios/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Proteínas/metabolismo , Transdução de Sinais , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
19.
Sci Rep ; 6: 20460, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847701

RESUMO

Targeting cancer stem cells (CSCs) in colorectal cancer (CRC) remains a difficult problem, as the regulation of CSCs in CRC is poorly understood. Here we demonstrated that KCTD12, potassium channel tetramerization domain containing 12, is down-regulated in the CSC-like cells of CRC. The silencing of endogenous KCTD12 and the overexpression of ectopic KCTD12 dramatically enhances and represses CRC cell stemness, respectively, as assessed in vitro and in vivo using a colony formation assay, a spheroid formation assay and a xenograft tumor model. Mechanistically, KCTD12 suppresses CRC cell stemness markers, such as CD44, CD133 and CD29, by inhibiting the ERK pathway, as the ERK1/2 inhibitor U0126 abolishes the increase in expression of CRC cell stemness markers induced by the down-regulation of KCTD12. Indeed, a decreased level of KCTD12 is detected in CRC tissues compared with their adjacent normal tissues and is an independent prognostic factor for poor overall and disease free survival in patients with CRC (p = 0.007). Taken together, this report reveals that KCTD12 is a novel regulator of CRC cell stemness and may serve as a novel prognostic marker and therapeutic target for patients with CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Células-Tronco Neoplásicas/patologia , Proteínas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Prognóstico
20.
Hepatology ; 63(6): 1928-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26910647

RESUMO

UNLABELLED: The phosphatidylinositol 3-kinase/phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase/protein kinase B/mammalian target of rapamycin (PI3K-PTEN-AKT-mTOR) pathway is a central controller of cell growth and a key driver for human cancer. MAF1 is an mTOR downstream effector and transcriptional repressor of ribosomal and transfer RNA genes. MAF1 expression is markedly reduced in hepatocellular carcinomas, which is correlated with disease progression and poor prognosis. Consistently, MAF1 displays tumor-suppressor activity toward in vitro and in vivo cancer models. Surprisingly, blocking the synthesis of ribosomal and transfer RNAs is insufficient to account for MAF1's tumor-suppressor function. Instead, MAF1 down-regulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. MAF1 binds to the PTEN promoter, enhancing PTEN promoter acetylation and activity. CONCLUSION: In contrast to its canonical function as a transcriptional repressor, MAF1 can also act as a transcriptional activator for PTEN, which is important for MAF1's tumor-suppressor function. These results have implications in disease staging, prognostic prediction, and AKT-mTOR-targeted therapy in liver cancer. (Hepatology 2016;63:1928-1942).


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...